REACTIONS OF GROUP IV ORGANOMETALLIC COMPOUNDS IX ADDITION AND SUBSEQUENT β -ELIMINATION REACTIONS OF TRIMETHYLSILYL- AND STANNYLAMINES WITH CHLORAL

KENJI ITOH, MITSUYO FUKUI, AND YOSHIO ISHII

Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University. Furo-cho, Chikusa-ku, Nagoya, Japan

(Received in Japan 11 May 1968; received in UK for publication 7 June 1968)

Simple insertion reactions of group IV organometallics have been investigated for various unsaturated systems¹. When insertion products were unstable, subsequent β -elimination from them were predicted for the reaction of chloral with $\operatorname{Sn}-0^2$ or $\operatorname{Pb}-0^3$ compounds and for that of C=S compounds with N-methylhexamethyldimetallazane^{4,5}. In this publication which takes chloral as an addendum, steric requirement on nitrogen atom in trimethylsilyldialkylamine is found to influence predominantly the stability of the insertion products. However, β elimination products were only obtained for trimethylstannyldimethyl- and diethylamine in the analogous way as Sn-0 or Pb-0 compounds.

When chloral (10 millimoles) were added to the same molar amounts of trimethylsilyldimethylamine at 0°, exothermic reaction took place. Distillation of above reaction mixture(b.p._{0.6} 71°) gave exclusively α -dimethylamino-3, β , β -trichloroethoxytrimethylsilane I_a, in 75% yield. Isolated insertion product I_a was identified as follows; <u>Anal</u>. Calcd. for C₇H₁₀ClNOSi Cl 40.19, Found 40.09, nmr; 7 9.80(9H) for CH₃-Si, 77.51(6H) for CH₃-N, and 75.51(1H) for C-H.

However, distillate for seven other trimethylsilyldialkylamines was the mixture of similar insertion products as \underline{I}_a and N,N-dialkylformamide \underline{I}_{b-h} . Formation of \underline{I} and trimethylsilyltrichloromethide, which was identified by comparison its infra-red and nmr spectra with authentic material⁶ and by the formation of chloroform (100% based on formed \underline{I}) and hexamethyldisiloxane (91%) through hydrolysis of reaction mixture, suggests the following pathway.

Relative amounts of \underline{I} and \underline{I} were estimated with peak areas of characteristic proton signals around 72.0 for \underline{I} and 75.5 for \underline{I} . Results were summarized in Table I.

As shown in Table I, stability of the insertion product \underline{I} did not show any relationship with the basicity of corresponding secondary amines. Above order of the ratio $\underline{I}/\underline{I}$ suggests that steric requirement of adduct \underline{I} played dominant role. Although basicity of N-trimethylsilylpiperidine and -morpholine would presumed to differ considerably, the ratios $\underline{I}/\underline{I}$ observed were nearly equal. Therefore, "1,3-interaction" favored β -elimination to a large extent compared with less hindered trimethylsilyldiethylamine or N-trimethylsilylpyrrolidine.

When trimethylstannyldimethyl or -diethylamine were treated with chloral instead of corresponding Si-N compounds in the same conditions, simple insertion adducts similar to \underline{I} were not detected at all for both Sn-N compounds. Sole products were N,N-dimethylformamide (64%) or N,N-diethylformamide (80%) and trimethyltin trichloromethide. The latter was identified with trimethyltin proton signal at 9.52 (lit. 9.50⁷ and 9.52⁸), and the wellknown formation of 7,7-dichloronorcarane⁷ (46% for Me and 39% for Et) as well as trimethyltin chloride (60% for Me and 78% for Et) by treating above reaction mixtures with cyclohexene at 150° for 24 hours.

Preferential β -elimination for Sn-N compounds seems analogous for Sn-0², or Pb-0³ compounds, however, insertion products for the latter two cases were stable at room temperature. Since $\vec{\sigma}$ values⁹ for -NMe₂ (-1.70) is smaller than for

	рК _а оf нr чн		10.87	10.98	00.11	11.29	11.22	8.36	ı	۱.
	ī/ī		0,00	06*0	3.04	0.67	1.19	1.17	2.97	3.47
and N,N-Dialkylformamide(\underline{I}) for the Reaction of Me ₃ Si-NRR' with Chloral ^a	ro N,N-Dialkyl- formamide(<u>I</u>)	Chem. Shift (7) <u>H</u> -CO-	ı	2.11	2.10	1.94	2.16	2.09	2.14,2.21	2.11,2.14
		Yield (%)	0	39.5	6•69	25.0	39.5	51.8	70•6	60.5
	β-trichlo ne (<u>I</u>)	hift C- <u>H</u>	5.51	5.44	5.45	5.30	5.59	5.62	5.40	5.35
	lamino-β,β,	Chemical S (τ) (C <u>H</u> 3) ₃ Si	9.80	9.78	9.78	9.80	61.6	9.75	9.77	6.77
	α-Dialky ethoxytr	Yield (م)	66 . 3	43.8	23.0	37.4	33.0	44.3	23.8	17.4
	1 R		Me	民	nŀr	1 ₂)4-	(2)5-	-cH ₂ CH ₂ -	Cyclohexyl	Cyclohexyl
	æ		Me	Et	nPr	- (CF	- (Ch	-CH2CH2-C	Me	Ŀt
	Run		¢	م	υ	q	Ð	٩٦	ы	ದ

^a Reactions were carried out by treating 10.0 millimoles of chloral with 10.0 millimoles of trimethylsilyldialkylamine at 0° , and agitating at $78^{\pm}2^{\circ}$ for 20 hours in a sealed tube, then distilling below 100°/ 0.1 mmHg.

No.35

TABLE I

-OMe(-0.78), larger mesomeric effect of dialkylamino group would favor elimination of trichloromethide group. Stability of insertion product for Sn-N compounds was therefore depressed compared with that of Sn-O compounds.

Extremely large stability of Si-O bond due to $(p-d)_{\mathcal{K}}$ overlap in the insertion product <u>I</u> from the reaction of Si-N compounds with chloral made β -elimination more difficult.

References

 M. F. Lappert and B. Prokai, "Advances in Organometallic Chemistry", vol. 5, Academic Press Inc., p. 225 (1967).
A. G. Davies and W. R. Symes, <u>J. Organometal. Chem.</u>, <u>5</u>, 394 (1966).
A. G. Davies and P. J. Puddephatt, <u>ibid.</u>, 5, 590 (1966).
K. Itoh, I. K. Lee, I. Matsuda, S. Sakai, and Y. Ishii, <u>Tetrahedron Letters</u>, 2667 (1967).
K. Itoh, Y. Fukumoto, and Y. Ishii, <u>ibid.</u>, in press(No. 28 of 1968) which was part <u>WIII</u> of this series.

6. W. R. Bamford and B. C. Pant, <u>J. Chem. Soc.(C)</u>, 1470 (1967).

7. D. Seyferth, F. M. Armbrecht, Jr., B. Prokai, and R. J. Cross, <u>J. Organometal.</u> Chem., <u>6</u>, 573 (1966).

8. A. G. Davies and W. R. Symes, <u>ibid., 6</u>, 568 (1966).

9. J. E. Lefler and E. Grumwald, "Rate and Equibria of Organic Reactions", John Wiley & Sons Inc., New York, 1963, p. 204.